Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Environ Adv ; 12: 100376, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2309813

ABSTRACT

Droplet nuclei dispersion patterns in indoor environments are reviewed from a physics view to explore the possibility of airborne transmission of SARS-CoV-2. This review analyzes works on particle dispersion patterns and their concentration in vortical structures in different indoor environments. Numerical simulations and experiments reveal the formation of the buildings' recirculation zones and vortex flow regions by flow separation, airflow interaction around objects, internal dispersion of airflow, or thermal plume. These vortical structures showed high particle concentration because particles are trapped for long periods. Then a hypothesis is proposed to explain why some medical studies detect the presence of SARS-CoV-2 and others do not detect the virus. The hypothesis proposes that airborne transmission is possible if virus-laden droplet nuclei are trapped in vortical structures associated with recirculation zones. This hypothesis is reinforced by a numerical study in a restaurant that presented possible evidence of airborne transmission by a large recirculating air zone. Furthermore, a medical study in a hospital is discussed from a physical view for identifying the formation of recirculation zones and their relation with positive tests for viruses. The observations show air sampling site located in this vortical structure is positive for the SARS-CoV-2 RNA. Therefore, the formation of vortical structures associated with recirculation zones should be avoided to minimize the possibility of airborne transmission. This work tries to understand the complex phenomenon of airborne transmission as a way in the prevention of transmission of infectious diseases.

2.
Atmosphere ; 14(4):698, 2023.
Article in English | ProQuest Central | ID: covidwho-2297382

ABSTRACT

Airborne transmission via aerosol particles without close human contact is a possible source of infection with airborne viruses such as SARS-CoV-2 or influenza. Reducing this indirect infection risk, which is mostly present indoors, requires wearing adequate respiratory masks, the inactivation of the viruses with radiation or electric charges, filtering of the room air, or supplying ambient air by means of ventilation systems or open windows. For rooms without heating, ventilation, and air conditioning (HVAC) systems, mobile air cleaners are a possibility for filtering out aerosol particles and therefore lowering the probability of indirect infections. The main questions are as follows: (1) How effectively do mobile air cleaners filter the air in a room? (2) What are the parameters that influence this efficiency? (3) Are there room situations that completely prevent the air cleaner from filtering the air? (4) Does the air cleaner flow make the stay in the room uncomfortable? To answer these questions, particle imaging methods were employed. Particle image velocimetry (PIV) was used to determine the flow field in the proximity of the air cleaner inlet and outlet to assess regions of unpleasant air movements. The filtering efficiency was quantified by means of particle image counting as a measure for the particle concentration at multiple locations in the room simultaneously. Moreover, different room occupancies and room geometries were investigated. Our results confirm that mobile air cleaners are suitable devices for reducing the viral load indoors. Elongated room geometries, e.g., hallways, lead to a reduced filtering efficiency, which needs to be compensated by increasing the volume flow rate of the device or by deploying multiple smaller devices. As compared to an empty room, a room occupied with desks, desk separation walls, and people does not change the filtering efficiency significantly, i.e., the change was less than 10%. Finally, the flow induced by the investigated mobile air cleaner does not reach uncomfortable levels, as by defined room comfort standards under these conditions, while at the same time reaching air exchange rates above 6, a value which is recommended for potentially infectious environments.

3.
2nd International Conference on Testing Technology and Automation Engineering, TTAE 2022 ; 12457, 2022.
Article in English | Scopus | ID: covidwho-2137338

ABSTRACT

The hospital room is the first line of assistance to patients, to ensure the comfort of doctors and patients at the same time, but also to ensure the protection of the personal safety of doctors and patients. For this reason, a good airflow organization helps to reduce the concentration of respiratory particles in the whole space and also creates a comfortable environment. Based on the CFD theory of computational fluid dynamics, ANSYS Fluent software is used to simulate the clinic environment, and four airflow organizations are used as the research objects, and the temperature cloud map, air age, and draft rate (DR) are used as the evaluation indexes, while the particulate matter concentration in the clinic is analyzed, and the 10 main indexes for evaluating the clinic environment are subjected to the principal component analysis algorithm (PCA), the four airflow organizations are comprehensive ranking. Since the traditional questionnaire has a lot of human subjectivity, using the algorithm can effectively compensate for the shortcomings of the questionnaire, and comparing the conclusions derived from the PCA algorithm with the results of the questionnaire can make the conclusions more scientific. The final conclusion is that the airflow organization of the replacement air supply can meet human comfort and air freshness while reducing the concentration of respiratory particulate matter in the clinic environment under the evaluation of various indexes, for which the replacement air supply scheme can provide a theoretical basis and reference for future construction implementation. © 2022 SPIE.

4.
Proc Natl Acad Sci U S A ; 119(22): e2202521119, 2022 05 31.
Article in English | MEDLINE | ID: covidwho-1860509

ABSTRACT

Many airborne pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are transmitted indoors via aerosol particles. During exercise, pulmonary ventilation can increase over 10-fold, and therefore, exercisers will exhale a greater volume of aerosol-containing air. However, we currently do not know how exercise affects the concentration of aerosol particles in exhaled air and the overall emission of aerosol particles. Consequently, we developed a method to measure in parallel the concentration of aerosol particles in expired air, pulmonary ventilation, and aerosol particle emission at rest and during a graded exercise test to exhaustion. We used this method to test eight women and eight men in a descriptive study. We found that the aerosol particle concentration in expired air increased significantly from 56 ± 53 particles/liter at rest to 633 ± 422 particles/liter at maximal intensity. Aerosol particle emission per subject increased significantly by a factor of 132 from 580 ± 489 particles/min at rest to a super emission of 76,200 ± 48,000 particles/min during maximal exercise. There were no sex differences in aerosol particle emission, but endurance-training subjects emitted significantly more aerosol particles during maximal exercise than untrained subjects. Overall, aerosol particle emission increased moderately up to an exercise intensity of ∼2 W/kg and exponentially thereafter. Together, these data might partly explain superspreader events especially during high-intensity group exercise indoors and suggest that strong infection prevention measures are needed especially during exercise at an intensity that exceeds ∼2 W/kg. Investigations of influencing factors like airway and whole-body hydration status during exercise on aerosol particle generation are needed.


Subject(s)
Aerosols , COVID-19 , Exercise , SARS-CoV-2 , Air Movements , COVID-19/prevention & control , Humans , Respiration
5.
Craniomaxillofac Trauma Reconstr ; 15(4): 362-368, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1582497

ABSTRACT

Study Design: Cadaveric simulation study. Objective: The novel coronavirus (COVID-19), which can be transmitted via aerosolized viral particles, has directed focus on protection of healthcare workers during procedures involving the upper aerodigestive tract, including maxillofacial trauma repair. This study evaluates particle generation at different distances from open reduction and internal fixation (ORIF) of maxillofacial injuries in the intraoperative setting to reduce the risk of contracting airborne diseases such as COVID-19. Methods: Two cadaveric specimens in a simulated operating room underwent ORIF of midface and mandible fractures via intraoral incisions as well as maxillomandibular fixation (MMF) using hybrid arch bars. ORIF was performed with both self-drilling screws and with the use of a power drill for creating guide holes. Real-time aerosol concentration was measured throughout each procedure using 3 particle counters placed 0.45, 1.68, and 3.81 m (1.5, 5.5, and 12.5 feet, respectively) from the operative site. Results: There was a significant decrease in particle concentration in all procedures at 1.68 m compared to 0.45 m, but only 2 of the 5 procedures showed further significant decrease in particle concentration when going from 1.68 to 3.81 m from the operative site. There was significantly less particle concentration generated at all distances when using self-drilling techniques compared to power drilling for ORIF. Conclusions: Consideration of using self-drilling screwing techniques as well as maintaining physical distancing protocols may decrease risk of transmission of airborne diseases such as COVID-19 while in the intraoperative setting.

6.
Int J Environ Res Public Health ; 18(17)2021 08 25.
Article in English | MEDLINE | ID: covidwho-1376838

ABSTRACT

Aerosols generated during dental procedures are one of the most significant routes for infection transmission and are particularly relevant now in the context of COVID-19 pandemic. This study aimed to assess the effectiveness of an indoor air purifier on dental aerosol dispersion in dental offices. The spread and removal of aerosol particles generated from a specific dental operation in a dental office are quantified for a single dental activity in the area near the generation and corner of the office. The effects of the air purifier, door condition, and particle sizes on the spread and removal of particles were investigated. The results show that, in the worst-case scenario, it takes 95 min for 0.5-µm particles to settle and that it takes a shorter time for the larger particles. The air purifier expedited the removal time at least 6.3 times faster than the case with no air purifier in the generation zone. Our results also indicate that particles may be transported from the source to the rest of the room even when the particle concentrations in the generation zone dropped back to the background. Therefore, it is inaccurate to conclude that indoor purifiers help reduce the transmission of COVID-19. Dental offices still need other methods to reduce the transmission of viruses.


Subject(s)
COVID-19 , Dental Offices , Aerosols , Humans , Pandemics , SARS-CoV-2
7.
J Transp Health ; 22: 101233, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1364292

ABSTRACT

INTRODUCTION: In 2020, due to the outbreak of COVID-19, there has been an unprecedented decrease in road traffic in almost all urbanized areas around the globe. This has undoubtedly affected the ambient air quality. METHODS: In this study mobile and fixed-site measurements of aerosol particle concentrations in the ambient air in one of the busiest streets in Lublin, a mid-sized city in Central Europe (Poland) during the COVID-19 lockdown in the spring of 2020 were performed. Based on the measurements particle doses received by road users during different times of the day were assessed. The obtained results were compared with corresponding pre-COVID-19 measurements also performed in the spring which were available only from 2017. RESULTS: During lockdown the mass concentration of traffic-related submicrometer PM1 particles and number concentration of ultrafine PN0.1 particles was significantly reduced. This resulted in a decrease of doses inhaled by road users as well as of particle doses deposited in their respiratory tracks. The greatest reductions of respectively over 2 times and over 5 times were observed during the day for total particles and traffic-related particles. Smaller reductions indicating the existence of relatively intensive non-traffic emissions were reported at night. CONCLUSIONS: Substantial decrease in traffic intensity in the city caused by lockdown restrictions resulted in a significant reduction in the concentration of vehicle-generated particles in the ambient air. This in turn could have resulted in smaller doses inhaled by the inhabitants, specifically road users, which should have a positive impact on their health.

8.
Sensors (Basel) ; 21(11)2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1266762

ABSTRACT

Human exposure to infectious aerosols results in the transmission of diseases such as influenza, tuberculosis, and COVID-19. Most dental procedures generate a significant number of aerosolized particles, increasing transmission risk in dental settings. Since the generation of aerosols in dentistry is unavoidable, many clinics have started using intervention strategies such as area-filtration units and extraoral evacuation equipment, especially under the relatively recent constraints of the pandemic. However, the effectiveness of these devices in dental operatories has not been studied. Therefore, the ability of dental personnel to efficiently position and operate such instruments is also limited. To address these challenges, we utilized a real-time sensor network for assessment of aerosol dynamics during dental restoration and cleaning producers with and without intervention. The strategies tested during the procedures were (i) local area High-Efficiency Particle Air (HEPA) filters and (ii) Extra-Oral Suction Device (EOSD). The study was conducted at the University of Washington School of Dentistry using a network of 13 fixed sensors positioned within the operatory and one wearable sensor worn by the dental operator. The sensor network provides time and space-resolved particulate matter (PM) data. Three-dimensional (3D) visualization informed aerosol persistence in the operatory. It was found that area filters did not improve the overall aerosol concentration in dental offices in a significant way. A decrease in PM concentration by an average of 16% was observed when EOSD equipment was used during the procedures. The combination of real-time sensors and 3D visualization can provide dental personnel and facility managers with actionable feedback to effectively assess aerosol transmission in medical settings and develop evidence-based intervention strategies.


Subject(s)
COVID-19 , Aerosols , Humans , Pandemics , Particulate Matter , SARS-CoV-2
9.
Eur J Pharm Biopharm ; 163: 252-265, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1144592

ABSTRACT

Lipid-based nanoparticles for RNA delivery (LNP-RNA) are revolutionizing the nanomedicine field, with one approved gene therapy formulation and two approved vaccines against COVID-19, as well as multiple ongoing clinical trials. As for other innovative nanopharmaceuticals (NPhs), the advancement of robust methods to assess their quality and safety profiles-in line with regulatory needs-is critical for facilitating their development and clinical translation. Asymmetric-flow field-flow fractionation coupled to multiple online optical detectors (MD-AF4) is considered a very versatile and robust approach for the physical characterisation of nanocarriers, and has been used successfully for measuring particle size, polydispersity and physical stability of lipid-based systems, including liposomes and solid lipid nanoparticles. However, the unique core structure of LNP-RNA, composed of ionizable lipids electrostatically complexed with RNA, and the relatively labile lipid-monolayer coating, is more prone to destabilization during focusing in MD-AF4 than previously characterised nanoparticles, resulting in particle aggregation and sample loss. Hence characterisation of LNP-RNA by MD-AF4 needs significant adaptation of the methods developed for liposomes. To improve the performance of MD-AF4 applied to LNP-RNA in a systematic and comprehensive manner, we have explored the use of the frit-inlet channel where, differently from the standard AF4 channel, the particles are relaxed hydrodynamically as they are injected. The absence of a focusing step minimizes contact between the particle and the membrane, reducing artefacts (e.g. sample loss, particle aggregation). Separation in a frit-inlet channel enables satisfactory reproducibility and acceptable sample recovery in the commercially available MD-AF4 instruments. In addition to slice-by-slice measurements of particle size, MD-AF4 also allows to determine particle concentration and the particle size distribution, demonstrating enhanced versatility beyond standard sizing measurements.


Subject(s)
Drug Carriers/chemistry , Lipids/chemistry , Nanoparticles/chemistry , RNA/administration & dosage , RNA/chemistry , Fractionation, Field Flow/methods , Humans , Nanomedicine/methods , Particle Size , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL